شبیه‌سازی کمی آب‌های زیرزمینی شهر هرات با استفاده از مدل MODFLOW

نویسندگان

  • نظام‌الدین تیموری دانشکده انجینیری، دانشگاه جامی

DOI::

https://doi.org/10.61438/jsrqj.v7i4.13

کلمات کلیدی:

شبیه سازی آب های زیرزمینی, شهر هرات, مدل MODFLOW, هیدروژئولوژی, منابع آبی

چکیده

شهر هرات در جنوب غرب افغانستان موقعیت دارد. این شهر یکی از بزرگترین و مهم ترین شهرهای افغانستان می‌باشد که تقریبا یک میلیون نفوس را در خود جای‌داده است. شهر هرات از جمله مناطق نیم‌خشک محسوب شده و متوسط بارندگی در این شهر 200 میلی متر در سال می‌باشد. منابع آب سطحی هرات عمدتا شامل سه رودخانه که از داخل شهر می‌گذرد می‌شود. جهت جریان آب زیرزمینی نیز با توجه به خطوط هم پتاسیل از شمال شرق به طرف جنوب غرب شهر می‌باشد. نظر به اطلاعات دست یافته سطح آب در سال‌های اخیر افت چشم‌گیری در این ناحیه داشته. به منظور شناخت دقیق‌تر آبخوان از نظر هیدروژیولوژیکی و بهره‌برداری بهینه از منابع آب‌های زیرزمینی، مدل ریاضی آبخوان شهر هرات با استفاده از مدل MODFLOW تهیه شده است. در ابتدا اطلاعات مورد نیاز شامل اطلاعات هواشناسی، هیدرولوژی، هیدروژیولوژی و سایر اطلاعات صحرایی و مورد نیاز گردآوری شده و سپس با استفاده از اطلاعات دست داشته مدل مفهومی اولیه دشت تهیه شد. در این مرحله با استفاده از نرم افزار GIS اطلاعاتی در خصوص ضخامت آبرفت، شرایط مرزی مانند نقشه توپوگرافی، اطلاعات بیلان و غیره تهیه گردیده و به مدل ریاضی منطقه مورد نظر وارد شد. این مدل برای سال آبی ۱۳۹۸-۱۳۹۷ با اعمال ۱۲ گام زمانی اجرا شد. هنگامی که مدل برای اولین بار اجرا شد نتایج حاصل از بار محاسباتی و بار مشاهداتی در محدوده قابل قبولی قرار نداشت، از این رو واسنجی مدل برای شرایط ماندگار و غیرماندگار به صورت دستی انجام شد.

 

دانلود

هنوز داده ای برای دانلود در دسترس نمی باشد

بیوگرافی نویسنده

نظام‌الدین تیموری، دانشکده انجینیری، دانشگاه جامی

 

 

مراجع

Azhdari Moghadam, M., & Bandani, A. (2007). Simulation of the Shoor River Aquifer using a groundwater mathematical model. In The 26th Earth Sciences Conference.

Akbarpour, A., Azizi, M., Agha Hoseini, A., & Shirazi, M. (2010). Management of exploitation of Makhtaran groundwater aquifer using the GMS mathematical model. In The 9th Hydraulic Conference, Tarbiat Modares University, Tehran.

Barani, S. (2010). Simulation of the Marvast Plain aquifer. Master's thesis, Faculty of Agriculture and Natural Resources, Yazd University.

Hosseini, S. A. (2018). Hari River. Institute of Strategic Studies of Afghanistan Publications, Kabul, 1st edition.

Zare, M. (2011). Investigating the effects of the construction of the irrigation and drainage network of the Goshan Dam on the groundwater resources of the Miandarband Plain using the conceptual model, mathematical model GMS6.5. Master's thesis, Faculty of Agriculture, Razi University, Kermanshah.

Shahi Dasht, A. R., & Abbasi Nezhad, A. (2010). Evaluation of the environmental effects of groundwater level decline in the Zarin Plain and presenting management solutions. Journal of Iran Water Research, No. 7, pp. 119-124.

Shayannejad, M., & Abdi, M. A. (2006). The effect of artificial recharge on optimal exploitation of water resources. In The 1st Regional Conference on Optimal Exploitation of Water Resources of Karun River and Zayandehrud River Basins.

Shamsaie, M., & Amiriegi, M. A. (2004). Management of exploitation of Yazd groundwater using a mathematical model. In The 1st Conference on Water Resources Management, Faculty of Engineering, University of Tehran.

Shahsavari, A., & Khodayi, K. (2005). Developing a groundwater flow model of the Behbahan Plain using GIS. In Proceedings of the 9th Iranian Geological Society Conference, Tehran Teacher Training University.

Sedaghat, M. (2007). Earth and water resources. Peyk-e-Noor University Publications, Tehran, 1st edition.

Taheri Tizro, A., & Kamali, M. (2016). Modeling of the Noyeserkhan Plain aquifer using the MODFLOW model and evaluation of hydrogeological conditions under current and future scenarios. Journal of Water Resources Engineering, Vol. 10, No. 2.

Alizadeh, A. (2010). Principles of Applied Hydrology. Qods Razavi Province Publications, Ferdowsi University of Mashhad.

Gholami, F. O. (2013). Simulation of groundwater level fluctuations using the GMS6.5 model in the Sari-Neka Plain aquifer. In The 6th National Conference on Watershed Management and Soil and Water Resources Management, Tehran University.

Ghabadian, R., Fattahi, A., Majidi, S., & Zare, M. (2012). Simulation of groundwater table fluctuations using the GMS model in the Miandarband Plain aquifer. In The 1st National Conference on Challenges of Water Resources and Agriculture, Iranian Irrigation and Drainage Association, Islamic Azad University, Khurasgan Branch.

Ghodrati, M., & Shaybani, M. (2012). Applied groundwater modeling: GMS model. Simaye Danesh Publications.

Kordvani, P. (2006). "Ziohydrology." 3rd edition. University of Tehran Press.

Karman, A., Khodaei, A., & Bagheri, R. (2012). "Investigating spatial and temporal variations of groundwater level in Kerman Plain using appropriate statistical methods during a ten-year statistical period of 1996-2005." Iranian Journal of Range and Desert Research, 19(1), 60-71.

Mohammadi, S., Salajegheh, A., Mahdavi, M., & Bagheri, R. (2012). "Investigating spatial and temporal variations of groundwater level in Kerman Plain using appropriate statistical methods during a ten-year statistical period of 1996-2005." Iranian Journal of Range and Desert Research, 19(1), 60-71.

Mahmoudian, M., Shushtari, S., & Ahmadi, M. (2010). "Groundwater Hydrology." Shahid Chamran University Publications, 2nd edition.

Safavi, H. (2006). "Engineering Hydrology." Arkan Publications, 3rd edition.

Moradi, M. (2017). "Quantitative modeling of groundwater in Khoy Plain using GMS software." Master's thesis, University of Tabriz.

Moghadam, A., & Ghabadi, H. (2009). "Numerical simulation of flow and pollutant transport in the groundwater of the Nahavand Plain." Water and Soil Science Journal, 23(2).

Zare, M. (2010). "Investigating the possibility of supplying Mashnooy with water using a conceptual and mathematical model in the Mahidasht Plain aquifer." Master's thesis, Razi University.

Ketibeh, H., & Hafezi, S. (2004). "Application of MODFLOW model and management of groundwater exploitation and evaluation of the performance of the artificial recharge project of Abbarik Bam Plain." Water and Wastewater Journal, 50(1), 45-58.

Mojouri Majd, N., Ghazban, F., & Ardestani, M. (2006). "Application of genetic algorithm model and artificial neural networks in quantitative and qualitative management of groundwater resources." Proceedings of the 2nd Water Resources Management Conference, Isfahan University of Technology.

Mahdavi, M., Farrokhzadeh, B., Salajegheh, A., Malekian, A., & Souri, M. (2011). "Simulation of the Hamedan-Bahar Plain aquifer and evaluation of management scenarios using PMWIN model." Watershed Research, 90(2).

Naseri, M. (2000). "Optimal exploitation of groundwater resources or control of water level on the table." Master's thesis, Department of Civil Engineering, Isfahan University of Technology.

Bear, J. (1979) “Hydraulics of groundwater”, Mc Graw Hill Series in Water Resources and Environmental Engineering

Brewer, K. (2003) Uncertainty Analysis with Site Specific Groundwater Models: Experiences and Observations (No. ERD-EN-2003-0126). Savannah River Site (US).

Kresic, N., 1997. Quantitative Solutions in Hydrogeology and Groundwater Modeling. Lewis Publishers, U.S.

Jacob, C.E., 1950. Flow of groundwater. In Engineering Hydraulics, John Wiley & Sons, New York.

Emace, R., Chodhury, A., Anaya, R., Way, S.C., 2000. A numerical groundwater flow model of the upper and middle Trinity aquifer. Hill Country area, Texas Water Development Board, Open _ file Report 00.

Treidel, H., Martin-Bordes, J.J., Gurdak, J.J., (Eds.), 2012. Climate Change Effects on Groundwater Resources: A Global Synthesis of Findings and Recommendations. International Association of Hydrogeologists (IAH), International Contributions to Hydrogeology, Taylor & Francis publishing.

Donald, M.C. Harbaugh, A.W. (1998)" Modflow a modular three-dimensional finite difference groundwater flow model, US, Geological survey".

Kresic, n. (2007) Hydrogeology and groundwater modelling. second edition. CRC press/Taylor and Francis, bocarton, newYork, lindon.

Wang, H.F., and Anderson, p. A., 1988. Introduction to groundwater modeling.

W.H. freeman, Sanfransisco. Treidel, H., Martin-Bordes, J.J., Gurdak, J.J., (Eds.), 2012. Climate Change Effects on Groundwater Resources: A Global Synthesis of Findings and Recommendations. International Association of Hydrogeologists (IAH), International Contributions to Hydrogeology, Taylor & Francis publishing.

Anderson, M., and Woessner, W., 1992. Applied groundwater modeling flow and adjective transport. Academic Press, San Diego. 381p. Andersen, Peter. F., 1993. A manual of instructional problems for U.S.G.S. Modflow Model, Geo Trans, Inc

Don, N.C., Araki, H., Yamanishi, H., Koga, K. (2005). “Simulation of groundwater flow and environmental effects resultingfrom pumping”, Environmental Geology, 47:361–374

Bear, J. (1979) “Hydraulics of groundwater”, Mc Graw Hill Series in Water Resources and Environmental Engineering, 569 p

##submission.downloads##

چاپ شده

2023-06-29

##plugins.generic.recommendBySimilarity.heading##

1 2 > >> 

##plugins.generic.recommendBySimilarity.advancedSearchIntro##